Stereochemical course of hydrolytic reaction catalyzed by alpha-galactosidase from cold adaptable marine bacterium of genus Pseudoalteromonas

نویسندگان

  • Irina Y. Bakunina
  • Larissa A. Balabanova
  • Vasiliy A. Golotin
  • Lyubov V. Slepchenko
  • Vladimir V. Isakov
  • Valeriy A. Rasskazov
چکیده

The recombinant α-galactosidase of the marine bacterium (α-PsGal) was synthesized with the use of the plasmid 40Gal, consisting of plasmid pET-40b (+) (Novagen) and the gene corresponding to the open reading frame of the mature α-galactosidase of marine bacterium Pseudoalteromonas sp. KMM 701, transformed into the Escherichia coli Rosetta(DE3) cells. In order to understand the mechanism of action, the stereochemistry of hydrolysis of 4-nitrophenyl α-D-galactopyranoside (4-NPGP) by α-PsGal was measured by (1)H NMR spectroscopy. The kinetics of formation of α- and β-anomer of galactose showed that α-anomer initially formed and accumulated, and then an appreciable amount of β-anomer appeared as a result of mutarotation. The data clearly show that the enzymatic hydrolysis of 4-NPGP proceeds with the retention of anomeric configuration, probably, due to a double displacement mechanism of reaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of a promoterless lacZ gene insertion to investigate chitinase gene expression in the marine bacterium Pseudoalteromonas sp. strain S9.

Sequence data for genes encoding 16S rRNA indicated that the marine strain previously named Pseudomonas sp. strain S9 would be better identified as a Pseudoalteromonas sp. By use of transposon mutagenesis, a chitinase-negative mutant of S9 with a lacZ reporter gene insertion was isolated. Part of the interrupted gene was cloned and sequenced. The deduced amino acid sequence had homology to sequ...

متن کامل

Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from ‘Deep Sea’ Sponges

The marine genus Pseudoalteromonas is known for its versatile biotechnological potential with respect to the production of antimicrobials and enzymes of industrial interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated from different deep sea sponges on the Illumina MiSeq platform. The isolates have been screened for various industrially important enzymes and co...

متن کامل

Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents.

A dark-green-pigmented marine bacterium, previously designated D2, which produces components that are inhibitory to common marine fouling organisms has been characterized and assessed for taxonomic assignment. Based on direct double-stranded sequencing of the 16S rRNA gene, D2T was found to show the highest similarity (93%) to members of the genus Pseudoalteromonas. The G + C content of D2T is ...

متن کامل

Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis.

The beta-galactosidase from the Antarctic gram-negative bacterium Pseudoalteromonas haloplanktis TAE 79 was purified to homogeneity. The nucleotide sequence and the NH(2)-terminal amino acid sequence of the purified enzyme indicate that the beta-galactosidase subunit is composed of 1,038 amino acids with a calculated M(r) of 118,068. This beta-galactosidase shares structural properties with Esc...

متن کامل

A new precursor for the immobilization of enzymes inside sol-gel-derived hybrid silica nanocomposites containing polysaccharides.

Tetrakis(2-hydroxyethyl) orthosilicate (THEOS) introduced by Hoffmann et al. (J. Phys. Chem. B., 106 (2002) 1528) was first used to prepare hybrid nanocomposites containing various polysaccharides and immobilize enzymes in these materials. Two different types of O-glycoside hydrolyses (EC3.2.1), 1-->3-beta-D-glucanase LIV from marine mollusk Spisula sacchalinensis and alpha-D-galactosidase from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014